
Family Name: .

First Name: .

Section: .

Security Protocols and Applications
(Part 1) — Solutions

Final Exam

June 25th, 2010

Duration: 3:00

This document consists of 4 pages.

Instructions

Electronic devices and documents are not allowed.

This exam contains 2 independent parts.

Answers for each part must be written on its separate sheet.

Answers can be either in French or English.

Questions of any kind will certainly not be answered. Potential errors in these sheets are part
of the exam.

You have to put your full name on the first page and have all pages stapled.

1 On Plaintext-Dependent Decryption in Secure Channels

This exercise is inspired by the article “Plaintext Recovery Attacks Against SSH” by Albrecht,
Watson, and Paterson published in IEEE Symposium on Security and Privacy 2009, IEEE
Press, 2009.

We use some parameters w, B, a, b, c, d, d′. Considering a set of words Z = {0, 1}w
of 2w elements, a finite sequence x ∈ Z∗ has a length (in words) denoted by |x|. (Namely,
the bitlength is w|x|.) We assume a binary encoding function Vn mapping an integer m ∈
{0, 1, . . . , Bn} to an element Vn(m) of Zn so that it can be decoded unambiguously by a
function V −1

n . For instance, we may consider binary encoding with Bn = 2wn − 1. We use a
block cipher Enc with blocks of 2d words in CBC mode (with secret initial vector K3) and a
message authentication code MAC of 2d

′
words. We assume a secure communication channel

which is considered as a continuous stream from A to B based on some secret keys K1, K2,
and K3. To send a new message x such that |x| ≤ 2B from Alice to Bob, Alice waits until
messages in the queue have been sent. Then, x is first transformed into a payload

y = Va(b+ |x|+ |padx|)‖Vb(|padx|)‖x‖padx
where padx denotes the padding for message x such that |padx| ≥ c and |y| is multiple of 2d.
The exact way that padx is constructed is unimportant. Then, it is transformed into

z = EncK1(y)‖MACK2(header‖y)

where header contains some extra protocol information which is not important here. Practi-
cally, the stream is split into packets which are sent sequentially in an asynchronous channel.
For applications, we will assume aw −B = 14.

1. In the case of AES and openSSH, what are the values of w, a, b, c, d, an B?

Words are bytes, w = 8, a = 4, b = 1, c = 4, and d = 4. We deduce B =
aw − (aw −B) = 18.

2. Recall how the CBC mode works.

Assume that |yi| = 2d for all i and y = y1‖ · · · ‖yn, then zi = CK1(yi ⊕ zi−1) with z0
set to some secret initial value K3.

3. Assuming that Bob receives z′, explain the algorithm to extract x′ from z′ such that
x′ = x when z′ = z. In this exercise, we assume that errors in extraction are immediately
notified but that there are no differences between the types of error.

The first block z1 of z is decrypted to y1 then y1 is parsed to m‖n‖ · · · where |m| = a
and |n| = b. Then, m and n are decoded to integers (we take the same notation
for the decoded numbers). If m > 2B or 2d does not divide m, or n < c, an error
is returned. Otherwise, what follows is decrypted on the fly until m more words
are received. This decrypts to x. Then, more words are received to reach a total
of a + n + 2d

′
. The stream is parsed into z1‖ · · · ‖z`‖z`+1 where |zi| = 2d for i ≤ `

and |z`+1| = 2d
′
. The string z1‖ · · · ‖z` is decrypted into y′ and the MAC z`+1 is

verified. If z`+1 6= MACK2(header‖y′), an error is returned. Otherwise, y′ is parsed
into m‖n‖x′‖pad such that |pad| = n and x′ is returned.

2

4. If an adversary sends a random block as a leading packet of z′, what is the probability
p that no error is returned?

It is the probability that m ≤ 2B and 2d divides m and n ≥ c for random a-word and
b-word m and n, which is p = 2B−d−aw(1− c2−wb). In our case, this is p ≈ 2−18.

5. Show how an adversary can decrypt aw − B bits of information of a payload block yi
form z with probability p−1.

Assume that we have cut the stream such that z`−1 is the end of some MAC value
so that z` is the first ciphertext block of a new payload. Send z′` = zi instead of z`.
Bob will decrypt this first block to zi−1⊕ yi⊕ z`−1. With probability p−1, the block is
accepted and it means that the first a words of this decodes to an integer lower than
2B. Using zi−1 and z`−1, this gives aw −B bits of yi.

6. To thwart the previous attack, could we have |x| put at the end instead? Why?

No, because we have no clue when the payload ends so we need a way to get the
length.

7. Could we have |x| sent in clear instead? Why?

We could have the length of the payload sent in clear but we want to hide the length
of the message x. If we send the length in clear, it shall be added in the header for
authentication.

8. Could we have z = EncK1(y‖MACK2(header‖y)) instead? Why?

Yes, but it does not change anything regarding the attack.

9. Could we have MACK2(header‖y) checked before the length instead? Why?

Yes but we still need to know when the payload ends to check the MAC so it does
not change anything regarding the attack.

10. Could we have Va(b+ |x|+ |padx|) authenticated in a separate way instead? Why?

Yes. It defeats the attack. However, it adds 2d
′
more words in the payload.

11. What would you propose as a countermeasure?

The adopted solution consists of switching to CTR mode with initial counter set to
a secret K3 instead of CBC. Another countermeasure consists of waiting until 2B

words before issuing the error, even when the error comes from the MAC verification.
Maybe an algorithm-independent solution would consists of authenticating the lengths
in a separate way as suggested in the previous question.

3

Any attempt to look at

the content of these pages

before the signal

will be severely punished.

Please be patient.

