Student Seminar: Security Protocols and Applications Final Exam Part 1/2 Solution

Philippe Oechslin and Serge Vaudenay

28.6.2011

I XTS Encryption Mode

We denote by Enc and Dec the encryption and decryption algorithms of a block cipher. Throughout this exercise, a plaintext block which is supposed to be written at index j of a sector i in a memory unit is denoted by $x_{i,j}$. Its ciphertext (the value which is actually stored at this place) is denoted by $y_{i,j}$. To encrypt a data block $x_{i,j}$ with key (K_1, K_2) , we compute

$$y_{i,j} = \operatorname{Enc}_{K_1}(x_{i,j} \oplus t_{i,j}) \oplus t_{i,j}$$
 where $t_{i,j} = \alpha^j \times \operatorname{Enc}_{K_2}(i)$

where α is a constant and $\alpha^{j} \times u$ denotes standard GF operations. Since there may be some incomplete block, we use ciphertext stealing to encrypt the last two blocks: if $x_{i,j-1}$ and $x_{i,j}$ are two consecutive blocks, $x_{i,j-1}$ being of complete length and $x_{i,j}$ having a reduced length, we store $y_{i,j-1}$ and $y_{i,j}$ respectively, obtained by

$$y_{i,j} \| u = \text{Enc}_{K_1}(x_{i,j-1} \oplus t_{i,j-1}) \oplus t_{i,j-1}$$
 and $y_{i,j-1} = \text{Enc}_{K_1}((x_{i,j} \| u) \oplus t_{i,j}) \oplus t_{i,j}$

where $y_{i,j} || u$ is splitted so that $y_{i,j}$ has the same length as $x_{i,j}$.

Q.1 Explain how to decrypt the last two ciphertext blocks $y_{i,j-1}$ and $y_{i,j}$ of a sector when $y_{i,j}$ is incomplete.

We compute $t_{i,j-1}$ and $t_{i,j}$ as defined then write $x_{i,j} || u = \text{Dec}_{K_1}(y_{i,j-1} \oplus t_{i,j}) \oplus t_{i,j}$ where $x_{i,j}$ has the same length as $y_{i,j}$ then

$$x_{i,j-1} = \mathsf{Dec}_{K_1}((y_{i,j} \| u) \oplus t_{i,j-1}) \oplus t_{i,j-1}$$

Q.2 Assume that within the same sector *i*, there are two different indices *j* and *j'* such that $x_{i,j} \oplus t_{i,j} = x_{i,j'} \oplus t_{i,j'}$. Show that $x_{i,j} \oplus y_{i,j} = x_{i,j'} \oplus y_{i,j'}$.

The condition implies $t_{i,j} \oplus t_{i,j'} = x_{i,j} \oplus x_{i,j'}$. So, we obtain that $x_{i,j} \oplus y_{i,j} = x_{i,j} \oplus t_{i,j} \oplus \mathsf{Enc}_{K_1}(x_{i,j} \oplus t_{i,j}) = x_{i,j'} \oplus t_{i,j'} \oplus \mathsf{Enc}_{K_1}(x_{i,j'} \oplus t_{i,j'}) = x_{i,j'} \oplus y_{i,j'}$ **Q.3** Again, assume that within the same sector *i*, there are two different indices *j* and *j'* such that $x_{i,j} \oplus t_{i,j'} = x_{i,j'} \oplus t_{i,j'}$. Given *i*, *j*, *j'*, *j''*, *y_{i,j}*, *y_{i,j'}*, show that we can compute $t_{i,j''}$ for any *j''*.

We have

$$y_{i,j} \oplus y_{i,j'} = x_{i,j} \oplus x_{i,j'} = t_{i,j} \oplus t_{i,j'} = (\alpha^{j} \oplus \alpha^{j'}) \times \text{Enc}_{K_2}(i)$$
So,

$$t_{i,j''} = \alpha^{j''} \times \text{Enc}_{K_2}(i) = \frac{\alpha^{j''}}{\alpha^{j} \oplus \alpha^{j'}} \times (y_{i,j} \oplus y_{i,j'})$$
which can be computed.

Q.4 Given a sector *i* and a block index *j* where a ciphertext block $y_{i,j}$ corresponding to a plaintext block $x_{i,j}$ is stored, assume that $t_{i,j}$ is known (e.g. due to the previous attack). Show that an adversary can corrupt one block j'' of sector *i* so that it would decrypt to something satisfying

$$x_{i,j''} = x_{i,j} \oplus \Delta$$

for a large set of Δ 's. More precisely, show that from $t_{i,j}$, $y_{i,j}$, and Δ , an adversary can (for many Δ 's but not all of them) find j'' and $y_{i,j''}$ so that storing $y_{i,j''}$ at position (i, j'') will decrypt to a block satisfying the above relation.

$$\frac{\Delta \times \alpha^j}{t_{i,j}} \oplus \alpha^j$$

is of form $\alpha^{j''}$ for a valid index j'', then $t_{i,j''} = \Delta \oplus t_{i,j}$. So, the target $x_{i,j''}$ satisfies $x_{i,j} \oplus t_{i,j} = x_{i,j''} \oplus t_{i,j''}$. Thus, the corresponding ciphertext block is

$$y_{i,j''} = \mathsf{Enc}_{K_1}(x_{i,j''} \oplus t_{i,j''}) \oplus t_{i,j''} = \mathsf{Enc}_{K_1}(x_{i,j} \oplus t_{i,j}) \oplus \alpha^{j''-j} \times t_{i,j} = y_{i,j} \oplus t_{i,1} \oplus \alpha^{j''-j} \times t_{i,j}$$

which can be computed.

If

Q.5 What would you propose to thwart the previous attack without changing the encryption mode?

We can store data with integrity check: if regular blocks are authenticated by some special blocks, then the adversary cannot manipulate them.

Q.6 We are encrypting random blocks. We assume that each sector is encrypted with a single key (which is not necessarily the same from one sector to the other). Given the memory capacity M (in bits) of a hard disk, the number ℓ of blocks per sector, and the bitlength n of a block, what is the probability p that there is a sector i with two different indices j and j' such that $x_{i,j} \oplus t_{i,j'} = x_{i,j'} \oplus t_{i,j'}$?

Application:
$$M = 2^{43}$$
 bits, $n = 128$ and $\ell = 256$.

Hint: let *E* be the average number of pairs $(i, \{j, j'\})$ (composed with a sector index *i* and an unordered pair $\{j, j'\}$ of block indices within the sector) for which the equation $x_{i,j} \oplus t_{i,j} = x_{i,j'} \oplus t_{i,j'}$ is satisfied. Then assume $p \approx E$.

We roughly have $\frac{1}{2}\ell^2$ unordered pairs $\{j, j'\}$ where $x_{i,j} \oplus t_{i,j} = x_{i,j'} \oplus t_{i,j'}$ occurs with probability 2^{-n} . We have $\frac{M}{n\ell}$ sectors. Each equation is satisfied with probability roughly 2^{-n} . So, we roughly have a probability of $\frac{M\ell}{n}2^{-n-1}$ that two blocks collide in the same sector. For the application, this is 2^{-85} .

Q.7 Conversely, assume that within the same sector *i*, there are two different indices *j* and *j'* such that $x_{i,j} \oplus y_{i,j} = x_{i,j'} \oplus y_{i,j'}$. What is the probability that $x_{i,j} \oplus t_{i,j} = x_{i,j'} \oplus t_{i,j'}$? **Hint:** write $x_{i,j} \oplus y_{i,j} = f(x_{i,j} \oplus t_{i,j})$ and think of the Bayes rule.

We have that

$$x_{i,j} \oplus y_{i,j} \oplus x_{i,j'} \oplus y_{i,j'} = f(z) \oplus f(z')$$

where $f(u) = u \oplus \text{Enc}_{K_1}(u)$ and $z = x_{i,j} \oplus t_{i,j}$, $z' = x_{i,j'} \oplus t_{i,j'}$. So, the condition implies that f(z) = f(z'). We have that $\Pr[z \neq z' | f(z) = f(z')]$ equals

$$\frac{\Pr[f(z) = f(z')|z \neq z'](1 - \Pr[z = z'])}{\Pr[f(z) = f(z')|z \neq z'](1 - \Pr[z = z']) + \Pr[f(z) = f(z')|z = z']\Pr[z = z']}$$

Clearly, $\Pr[f(z) = f(z')|z = z'] = 1$. Assuming that f behaves like a random function and that $z \oplus z'$ is uniformly distributed, we have $\Pr[f(z) = f(z')|z \neq z'] \approx 2^{-n}$ and $\Pr[z = z'] = 2^{-n}$ where n is the block length. So,

$$\Pr[z \neq z' | f(z) = f(z')] = 2^{-n} \frac{1 - 2^{-n}}{2^{-n}(1 - 2^{-n}) + 2^{-n}} \approx \frac{1}{2}$$

So, we have that z = z' with probability $\frac{1}{2}$ given that $x_{i,j} \oplus y_{i,j} = x_{i,j'} \oplus y_{i,j'}$.