Student Seminar: Security Protocols and Applications Final Exam Part 1/2
 Solution

Philippe Oechslin and Serge Vaudenay
28.6.2011

I XTS Encryption Mode

We denote by Enc and Dec the encryption and decryption algorithms of a block cipher. Throughout this exercise, a plaintext block which is supposed to be written at index j of a sector i in a memory unit is denoted by $x_{i, j}$. Its ciphertext (the value which is actually stored at this place) is denoted by $y_{i, j}$. To encrypt a data block $x_{i, j}$ with key $\left(K_{1}, K_{2}\right)$, we compute

$$
y_{i, j}=\operatorname{Enc}_{K_{1}}\left(x_{i, j} \oplus t_{i, j}\right) \oplus t_{i, j} \quad \text { where } \quad t_{i, j}=\alpha^{j} \times \operatorname{Enc}_{K_{2}}(i)
$$

where α is a constant and $\alpha^{j} \times u$ denotes standard GF operations. Since there may be some incomplete block, we use ciphertext stealing to encrypt the last two blocks: if $x_{i, j-1}$ and $x_{i, j}$ are two consecutive blocks, $x_{i, j-1}$ being of complete length and $x_{i, j}$ having a reduced length, we store $y_{i, j-1}$ and $y_{i, j}$ respectively, obtained by

$$
y_{i, j} \| u=\operatorname{Enc}_{K_{1}}\left(x_{i, j-1} \oplus t_{i, j-1}\right) \oplus t_{i, j-1} \quad \text { and } \quad y_{i, j-1}=\operatorname{Enc}_{K_{1}}\left(\left(x_{i, j} \| u\right) \oplus t_{i, j}\right) \oplus t_{i, j}
$$

where $y_{i, j} \| u$ is splitted so that $y_{i, j}$ has the same length as $x_{i, j}$.
Q. 1 Explain how to decrypt the last two ciphertext blocks $y_{i, j-1}$ and $y_{i, j}$ of a sector when $y_{i, j}$ is incomplete.

We compute $t_{i, j-1}$ and $t_{i, j}$ as defined then write

$$
x_{i, j} \| u=\operatorname{Dec}_{K_{1}}\left(y_{i, j-1} \oplus t_{i, j}\right) \oplus t_{i, j}
$$

where $x_{i, j}$ has the same length as $y_{i, j}$ then

$$
x_{i, j-1}=\operatorname{Dec}_{K_{1}}\left(\left(y_{i, j} \| u\right) \oplus t_{i, j-1}\right) \oplus t_{i, j-1}
$$

Q. 2 Assume that within the same sector i, there are two different indices j and j^{\prime} such that $x_{i, j} \oplus t_{i, j}=$ $x_{i, j^{\prime}} \oplus t_{i, j^{\prime}}$. Show that $x_{i, j} \oplus y_{i, j}=x_{i, j^{\prime}} \oplus y_{i, j^{\prime}}$.

The condition implies $t_{i, j} \oplus t_{i, j^{\prime}}=x_{i, j} \oplus x_{i, j^{\prime}}$. So, we obtain that

$$
x_{i, j} \oplus y_{i, j}=x_{i, j} \oplus t_{i, j} \oplus \operatorname{Enc}_{K_{1}}\left(x_{i, j} \oplus t_{i, j}\right)=x_{i, j^{\prime}} \oplus t_{i, j^{\prime}} \oplus \operatorname{Enc}_{K_{1}}\left(x_{i, j^{\prime}} \oplus t_{i, j^{\prime}}\right)=x_{i, j^{\prime}} \oplus y_{i, j^{\prime}}
$$

Q. 3 Again, assume that within the same sector i, there are two different indices j and j^{\prime} such that $x_{i, j} \oplus t_{i, j}=x_{i, j^{\prime}} \oplus t_{i, j^{\prime}}$. Given $i, j, j^{\prime}, j^{\prime \prime}, y_{i, j}, y_{i, j^{\prime}}$, show that we can compute $t_{i, j^{\prime \prime}}$ for any $j^{\prime \prime}$.

We have

$$
y_{i, j} \oplus y_{i, j^{\prime}}=x_{i, j} \oplus x_{i, j^{\prime}}=t_{i, j} \oplus t_{i, j^{\prime}}=\left(\alpha^{j} \oplus \alpha^{j^{\prime}}\right) \times \operatorname{Enc}_{K_{2}}(i)
$$

So,

$$
t_{i, j^{\prime \prime}}=\alpha^{j^{\prime \prime}} \times \operatorname{Enc}_{K_{2}}(i)=\frac{\alpha^{j^{\prime \prime}}}{\alpha^{j} \oplus \alpha^{j^{\prime}}} \times\left(y_{i, j} \oplus y_{i, j^{\prime}}\right)
$$

which can be computed.
Q. 4 Given a sector i and a block index j where a ciphertext block $y_{i, j}$ corresponding to a plaintext block $x_{i, j}$ is stored, assume that $t_{i, j}$ is known (e.g. due to the previous attack). Show that an adversary can corrupt one block $j^{\prime \prime}$ of sector i so that it would decrypt to something satisfying

$$
x_{i, j^{\prime \prime}}=x_{i, j} \oplus \Delta
$$

for a large set of Δ 's. More precisely, show that from $t_{i, j}, y_{i, j}$, and Δ, an adversary can (for many Δ^{\prime} 's but not all of them) find $j^{\prime \prime}$ and $y_{i, j^{\prime \prime}}$ so that storing $y_{i, j^{\prime \prime}}$ at position $\left(i, j^{\prime \prime}\right)$ will decrypt to a block satisfying the above relation.

$$
\begin{aligned}
& \qquad \frac{\Delta \times \alpha^{j}}{t_{i, j}} \oplus \boldsymbol{\alpha}^{j} \\
& \text { is of form } \alpha^{j^{\prime \prime}} \text { for a valid index } j^{\prime \prime} \text {, then } t_{i, j^{\prime \prime}}=\Delta \oplus t_{i, j} \text {. So, the target } x_{i, j^{\prime \prime}} \text { satisfies } x_{i, j} \oplus t_{i, j}= \\
& x_{i, j^{\prime \prime}} \oplus t_{i, j^{\prime \prime}} \text {. Thus, the corresponding ciphertext block is } \\
& y_{i, j^{\prime \prime}}=\operatorname{Enc}_{K_{1}}\left(x_{i, j^{\prime \prime}} \oplus t_{i, j^{\prime \prime}}\right) \oplus t_{i, j^{\prime \prime}}=\operatorname{Enc}_{K_{1}}\left(x_{i, j} \oplus t_{i, j}\right) \oplus \alpha^{j^{j^{\prime \prime}}-j} \times t_{i, j}=y_{i, j} \oplus t_{i, 1} \oplus \alpha^{j^{\prime \prime}-j} \times t_{i, j} \\
& \text { which can be computed. }
\end{aligned}
$$

Q. 5 What would you propose to thwart the previous attack without changing the encryption mode?

We can store data with integrity check: if regular blocks are authenticated by some special blocks, then the adversary cannot manipulate them.
Q. 6 We are encrypting random blocks. We assume that each sector is encrypted with a single key (which is not necessarily the same from one sector to the other). Given the memory capacity M (in bits) of a hard disk, the number ℓ of blocks per sector, and the bitlength n of a block, what is the probability p that there is a sector i with two different indices j and j^{\prime} such that $x_{i, j} \oplus t_{i, j}=x_{i, j^{\prime}} \oplus t_{i, j^{\prime}}$?
Application: $M=2^{43}$ bits, $n=128$ and $\ell=256$.
Hint: let E be the average number of pairs $\left(i,\left\{j, j^{\prime}\right\}\right)$ (composed with a sector index i and an unordered pair $\left\{j, j^{\prime}\right\}$ of block indices within the sector) for which the equation $x_{i, j} \oplus t_{i, j}=x_{i, j^{\prime}} \oplus$ $t_{i, j^{\prime}}$ is satisfied. Then assume $p \approx E$.

We roughly have $\frac{1}{2} \ell^{2}$ unordered pairs $\left\{j, j^{\prime}\right\}$ where $x_{i, j} \oplus t_{i, j}=x_{i, j^{\prime}} \oplus t_{i, j^{\prime}}$ occurs with probability 2^{-n}. We have $\frac{M}{n \ell}$ sectors. Each equation is satisfied with probability roughly 2^{-n}. So, we roughly have a probability of $\frac{M \ell}{n} 2^{-n-1}$ that two blocks collide in the same sector. For the application, this is 2^{-85}.
Q. 7 Conversely, assume that within the same sector i, there are two different indices j and j^{\prime} such that $x_{i, j} \oplus y_{i, j}=x_{i, j^{\prime}} \oplus y_{i, j^{\prime}}$. What is the probability that $x_{i, j} \oplus t_{i, j}=x_{i, j^{\prime}} \oplus t_{i, j^{\prime}}$?
Hint: write $x_{i, j} \oplus y_{i, j}=f\left(x_{i, j} \oplus t_{i, j}\right)$ and think of the Bayes rule.
We have that

$$
x_{i, j} \oplus y_{i, j} \oplus x_{i, j^{\prime}} \oplus y_{i, j^{\prime}}=f(z) \oplus f\left(z^{\prime}\right)
$$

where $f(u)=u \oplus \operatorname{Enc}_{K_{1}}(u)$ and $z=x_{i, j} \oplus t_{i, j}, z^{\prime}=x_{i, j^{\prime}} \oplus t_{i, j^{\prime}}$. So, the condition implies that $f(z)=f\left(z^{\prime}\right)$. We have that $\operatorname{Pr}\left[z \neq z^{\prime} \mid f(z)=f\left(z^{\prime}\right)\right]$ equals

$$
\frac{\operatorname{Pr}\left[f(z)=f\left(z^{\prime}\right) \mid z \neq z^{\prime}\right]\left(1-\operatorname{Pr}\left[z=z^{\prime}\right]\right)}{\operatorname{Pr}\left[f(z)=f\left(z^{\prime}\right) \mid z \neq z^{\prime}\right]\left(1-\operatorname{Pr}\left[z=z^{\prime}\right]\right)+\operatorname{Pr}\left[f(z)=f\left(z^{\prime}\right) \mid z=z^{\prime}\right] \operatorname{Pr}\left[z=z^{\prime}\right]}
$$

Clearly, $\operatorname{Pr}\left[f(z)=f\left(z^{\prime}\right) \mid z=z^{\prime}\right]=1$. Assuming that f behaves like a random function and that $z \oplus z^{\prime}$ is uniformly distributed, we have $\operatorname{Pr}\left[f(z)=f\left(z^{\prime}\right) \mid z \neq z^{\prime}\right] \approx 2^{-n}$ and $\operatorname{Pr}\left[z=z^{\prime}\right]=2^{-n}$ where n is the block length. So,

$$
\operatorname{Pr}\left[z \neq z^{\prime} \mid f(z)=f\left(z^{\prime}\right)\right]=2^{-n} \frac{1-2^{-n}}{2^{-n}\left(1-2^{-n}\right)+2^{-n}} \approx \frac{1}{2}
$$

So, we have that $z=z^{\prime}$ with probability $\frac{1}{2}$ given that $x_{i, j} \oplus y_{i, j}=x_{i, j^{\prime}} \oplus y_{i, j^{\prime}}$.

