Midterm Exam Selected Topics on Security and Cryptography May 2007

Warning:

- this exam consists of a survey and an exercise of same weight in the grade
- the survey consists of 3 series of 10 questions
- each series will be independently graded
- for each survey question there is one and only one correct answer
- any wrong answer may decrease the grade

1 Surveys

1.1 Communication Security

- 1. Secure encryption over infinite domain cannot be achieved because
 - \Box the encryption cannot operate with too large messages
 - □ given a ciphertext, possible decrypted plaintexts are eventually less likely than others
 - $\Box\,$ this would require a key of infinite length
 - $\hfill\square$ Shannon said so
- 2. A symmetric encryption scheme can be considered as a special threshold secret sharing scheme for 2 participants with a threshold of 2 because...
 - \Box we can say that the two participants share the same key
 - \Box the plaintext and the ciphertext can be seen as the two shares for the key
 - \Box the key and the plaintext can be seen as the two shares for the ciphertext
 - \Box the key and the ciphertext can be seen as the two shares for the plaintext
- 3. RC4 is...
 - $\Box\,$ a broken hash function
 - □ designed by Joan Daemen and Vincent Rijmen
 - \Box implemented in SSL
 - \Box a secure block cipher
- 4. To safely throw a die over the telephone, Alice and Bob must...
 - \Box use a commitment scheme
 - \Box use one-time pad
 - $\hfill\square$ trust each other
 - \Box throw it very hard
- 5. In TLS, algorithm MD5 refers to
 - \Box a block cipher
 - \Box a hash function
 - \Box a message authentication code
 - \Box a key establishment protocol
- 6. Using the keep-in-touch protocol, we can
 - \Box break over and remain good friend
 - $\hfill\square$ agree that a transaction terminated
 - \Box protect the confidentiality of a discussion
 - \Box waste the bandwidth
- 7. Identification Friend or Foe (IFF) attacks are...
 - \Box ciphertext only attacks
 - \Box known plaintext attacks
 - \Box chosen plaintext attacks
 - \Box chosen ciphertext attacks

- 8. In TLS, the advantage of the anonymous Diffie-Hellman is in
 - \Box pleasing two renowned cryptographers
 - $\hfill\square$ not over-claiming some unfounded security level
 - \Box preventing from active attacks
 - \Box being provably secure
- 9. Side channels cannot...
 - \Box break RSA
 - \Box break SSL
 - \Box break DES
 - $\Box\,$ reveal flaws in security proofs
- 10. In early versions of TLS using CBC encryption, when the fragment padding were correct in a forged ciphertext, the error after decryption were...
 - \Box invalid_error
 - □ decryption_failed
 - □ bad_record_mac
 - □ buffer_overflow

1.2 Broadcast Encryption and Traitor Tracing

- 1. Broadcast encryption schemes can be classified as being "stateless" or "stateful" schemes. Stateless schemes ...
 - \Box ...assume that the receivers have a high-bandwith return path to the broadcasting center.
 - \Box ...imply that the receivers are able, in case of emergency, to update parts of the secret information they store.
 - \Box ...do not require bidirectional cable network.
 - \Box ...have a broadcast message length which never depends on the number of revoked users.
- 2. An important difference between broadcast encryption schemes based on Complete-Subtree Cover (CSC) and Subset-Difference Cover (SDC) is that...
 - \Box ...there is significantly less secret keys to store with CSC.
 - \Box ...there is significantly less secret keys to store with SDC.
 - \Box ...there is significantly more keys to store with SDC, but the keys are not required to be secret.
 - \Box ...there is significantly less secret keys to store with CSC, and furthermore, the keys are not required to be secret.
- 3. The main difference between broadcast encryption schemes based on Complete-Subtree Cover (CSC) and Subset-Difference Cover (SDC) is that...
 - \Box ...schemes based on CSC are stateless while schemes based on SDC are stateful.
 - $\hfill\square$...schemes based on CSC are stateful while schemes based on SDC are stateless.
 - □ ...schemes based on CSC have bandwidth requirements not depending on the total number of receivers.
 - □ ...schemes based on SDC have bandwidth requirements not depending on the total number of receivers.
- 4. Broadcast encryption based on Logical Key Hierarchy ...
 - \Box ...implies that the receivers do not need to be stateful.
 - \Box ...implies that the receivers need to be stateful.
 - \Box ...implies that the receivers need to be stateful, but not all the time.
 - \Box ...implies that the receivers need to be stateless and stateful at the same time.
- 5. Broadcast encryption based on Logical Key Hierarchy ...
 - \Box ...requires that a receiver stores as many keys as users in the system.
 - \Box ...requires that a receiver stores only public keys.
 - \Box ...requires that a receiver is most of the time switched off.
 - \Box ...requires to store a number of keys which is logarithmic in terms of the total number of users in the system.
- 6. In the Boneh-Franklin traitor tracing scheme, ...
 - \Box ...a passive adversary able to break the semantic security of that scheme can break the Computational Diffie-Hellman Assumption.
 - \Box ...a passive adversary able to break the semantic security of that scheme cannot break the Decisional Diffie-Hellman Assumption.
 - \Box ...an active adversary able to break the semantic security of that scheme can trivially factorize RSA moduli.
 - \Box ...a passive adversary able to break the semantic security of that scheme can break the Decisional Diffie-Hellman Assumption.

- 7. When using the Boneh-Franklin scheme, coalitions of pirates having a size strictly larger than the maximal allowed coalition size can...
 - □ ...generate a single, untraceable new key able to decrypt the protected content out of their own private.
 - \Box ...generate an extremely large number of untraceable, new keys able to decrypt the protected content.
 - \Box ...generate a single new key able to decrypt the protected content out of their own private keys, but that key is traceable.
 - \Box ...generate an extremely large number of new keys able to decrypt the protected content, but that keys are traceable.
- 8. We would like to implement the Boneh-Franklin scheme on a prime-order group. Let p and q be two prime numbers of respective size 1024 and 1023 bits such that p = 2q + 1. Furthermore, let p' and q' be two prime numbers having a respective size of 1024 and 160 bits such that p' = Nq' + 1 for some N. On the receiver side, it is more efficient to work...
 - \Box ...in the multiplicative subgroup of order q in \mathbb{Z}_p^* since both p and q have approximately the same size.
 - \Box ...in the additive subgroup of order q' in $\mathbf{Z}_{p'}^*$ since the modular exponentiations are done with 864-bit exponents.
 - \Box ...in the multiplicative subgroup of order q' in $\mathbb{Z}_{p'}^*$ since the modular exponentiations are done with 160-bit exponents.
 - \Box ...directly in the multiplicative group \mathbf{Z}_p^* (which has an order equal to 2q), since it is not required to have a prime-order group to implement the Boneh- Franklin scheme.
- 9. In the Boneh-Franklin scheme...
 - $\hfill\square$...the private key size depends on the total number of revoked users.
 - \Box ...the private key size depends on the total number of users in the system.
 - \Box ...the private key size depends on the tracing capabilities of the linear code.
 - \Box ...the private key size depends on the number of users which don't collude.
- 10. In the Boneh-Franklin scheme...
 - \Box ...tracing can never be performed with help of the Berlekamp algorithm.
 - \Box ...tracing can be performed with help of the Berlekamp algorithm in complexity $O(n^2)$, where n is the total number of users in the system.
 - \Box ...tracing can be performed with help of the Berlekamp algorithm in complexity O(1).
 - \Box ...tracing cannot be done on revoked users.

1.3 Provable Security and Hybrid Encryption

- 1. The Chor-Rivest cryptosystem is...
 - \Box provably secure.
 - \Box a block cipher.
 - \Box equivalent to the knapsack problem.
 - \Box broken.
- 2. What can we say for sure about a public-key encryption scheme provably secure in the Random Oracle model?
 - \Box A real instantiation of the scheme is secure.
 - \Box A real instantiation of the scheme is insecure.
 - \Box In the proof, block ciphers are replaced by random permutations.
 - \Box In the proof, hash function are replaced by random functions.
- 3. Which of the following security notions is the strongest one for a public-key encryption scheme?
 - □ One-Wayness
 - \Box Semantic Security
 - \Box CCA-Security
 - □ Existential Unforgeability
- 4. Tick the *true* assertion.
 - \Box The Luby-Rackoff construction is based on that of the advanced encryption standard (AES).
 - \Box The Luby-Rackoff construction builds a uniformly distributed random permutation on 2n bits out of three uniformly distrusted random functions on *n* bits.
 - \Box Provided that *n* is large enough, it is hard to distinguish a random instance of the Luby-Rackoff construction on 2*n* bits from a uniformly distributed random function on 2*n* bits.
 - \Box None of the above assertions is true.
- 5. In a proof based on a sequence of games, the Gnome technique (a.k.a. lazy sampling technique) is typically,...
 - \Box a bridging step.
 - \Box used to prove the security of a public-key encryption scheme, and never used to prove that of a digital signature scheme.
 - $\hfill\square$ a transition based on a failure event.
 - \Box used to prove the security of the ElGamal public-key encryption scheme.
- 6. Tick the true assertion about the FDH.
 - \Box FDH stands for *Formal Diffie-Hellman*.
 - \Box FDH is a provably secure encryption scheme.
 - \Box FDH is provably secure in the *standard* model.
 - \Box FDH is often based on the RSA permutation.
- 7. OAEP+ was introduced by
 - \Box Victor Shoup
 - \Box Mihir Bellare
 - □ Serge Vaudenay
 - □ Jean-Sébastien Coron

- 8. What is the reason why hybrid encryption (KEM-DEM or TagKEM-DEM) can encrypt plaintexts of arbitrary length?
 - □ because KEM/TagKEM has infinite domain
 - \Box because DEM has infinite domain
 - \Box because hybrid encryption is provably secure
 - $\hfill\square$ because adversaries have bounded capacities
- 9. In the proof for TagKEM-DEM in slides, what is the reason that the difference in advantage of IND-CCA PKE adversary A_E between game 0 and game 1 equals the advantage of IND-CCA TKEM adversary A_T ?
 - □ transition based on indistinguishability: IND-CCA PKE and IND-CCA TKEM games are indistinguishable since existence of a TagKEM is implied by a PKE
 - □ transition based on bridging step: IND-CCA PKE and IND-CCA TKEM games are equivalent since TagKEM is similar to a PKE
 - \Box transition based on failure: If A_T fails, so will A_E
 - \Box whether it is game 0 or game 1 depends on δ
- 10. Abe et al. in their TagKEM-DEM paper mention in their Section 6: Conclusions that the Cramer-Shoup based TagKEM-DEM can provide streaming feature if needed. What is the reason that makes an encryption or decryption streamable?
 - \Box both encryption and decryption can be parallelized
 - □ decryption can start before entire ciphertext is received
 - \Box decryption can start even before encryption has started
 - □ TagKEM is based on a public key

2 Exercise

Malleability implies IND-CCA Insecurity

- 1. In GSM, a cleartext x is first encrypted by using a pseudorandom generator G into $y = \text{Enc}(x) = x \oplus G(K, \text{ctr})$ given a secret key K and a frame counter ctr. The ciphertext y is sent over the radio channel. Decryption Dec(y) is performed with the same secret key K and a synchronized frame counter.
 - (a) Give two bijective functions f and g which are different from the identity function and such that Dec(f(Enc(x))) = g(x).

We call this property "simple malleability"

- (b) Which security property is not achieved by this encryption?
- 2. We consider a public-key cryptosystem Gen/Enc/Dec.

We assume simple malleability: we assume that one knows two bijective functions f and g which are different from the identity function and such that $\text{Dec}_{K_s}(f(\text{Enc}_{K_p}(x))) = g(x)$ for any x where (K_p, K_s) is generated by Gen.

- (a) Recall the definition of the IND-CCA security notion.
- (b) Prove that the cryptosystem is not IND-CCA secure.
- 3. We consider a public-key cryptosystem Gen/Enc/Dec. Let G by a pseudorandom generator. Let (K_p, K_s) by one public-secret key pair generated by Gen. We define a hybrid cryptosystem

such that

$$\mathsf{HEnc}_{K_p}(x) = (\mathsf{Enc}_{K_p}(\kappa), x \oplus G(\kappa))$$

where κ is a random value which is picked every time we must encrypt a new message. (Encryption is not deterministic.)

- (a) Explain how decryption works.
- (b) By using simple malleability, show that the proposed hybrid cryptosystem is not IND-CCA secure.
- (c) Propose a way to fix this problem by slightly changing the hybrid cryptosystem definition.